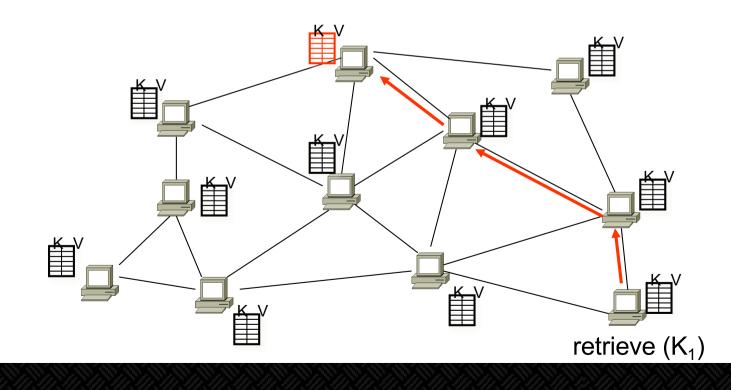
Attacking the Kad network-real world evaluation and high fidelity simulation using DVN

Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, Denis Foo Kune, Nicholas Hopper and Yongdae Kim Wiley Security and Communication Networks 2008

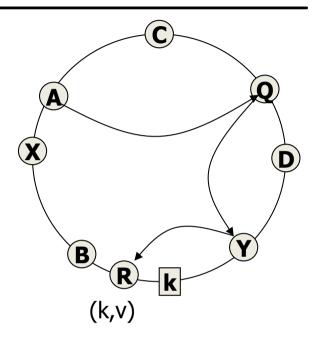
> KAIST SysSec Lab

Minjung Kim

P₂P Systems

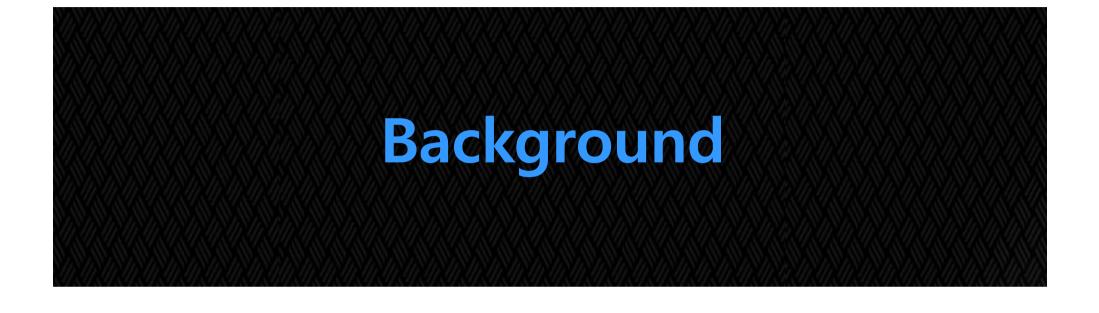

- How to find the desired information?
 - Centralized structured: Napster
 - Decentralized unstructured Gmutella

P₂P Systems


- How to find the desired information?
 - Centralized structured: Napster
 - Decentralized unstructured: Gnutella
 - Decentralized structured: Distributed Hash Table

DHT: Terminologies

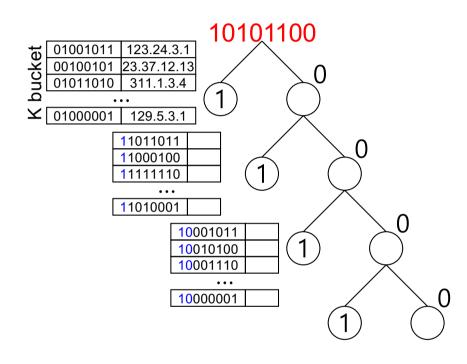
- Every node has a unique ID: nodeID
- Every object has a unique ID: key
- Keys and nodeIDs are logically arranged on a *ring* (*ID space*)
- A data object is stored at its *root(key)* and several *replica roots*
 - Closest nodeID to the key (or successor of k)
- Range: the set of keys that a node is responsible for
- Routing table size: O(log(N))
- Routing delay: O(log(N)) hops



Main Questions?

Any P2P system is used for finding desired information

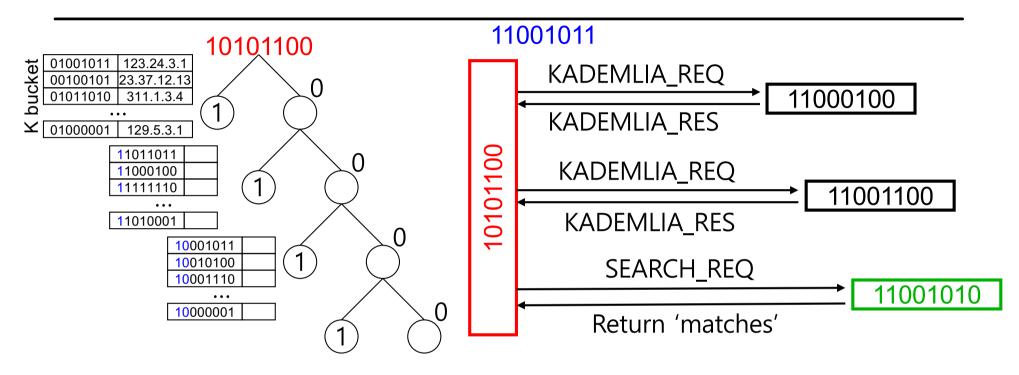
- Questions
 - Routing attacks on DHT? What does it mean?
 - Is the most popular DHT secure against routing attacks?
 - What are the resources?
 - How efficient is the attack?
 - How to fix it?


Target P2P System

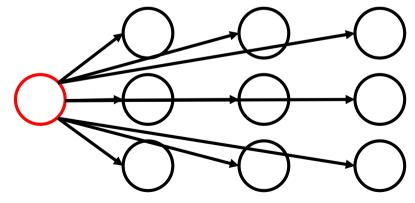
✤ Kad

- A peer-to-peer DHT based on Kademlia
- Kad Network
 - BitTorrent
 - Overlay built using eD2K series clients
 - eMule, aMule, MLDonkey
 - Over 1 million nodes, many more firewalled users
 - BT series clients
 - Overlay on Azureus
 - Overlay on Mainline and BitComet

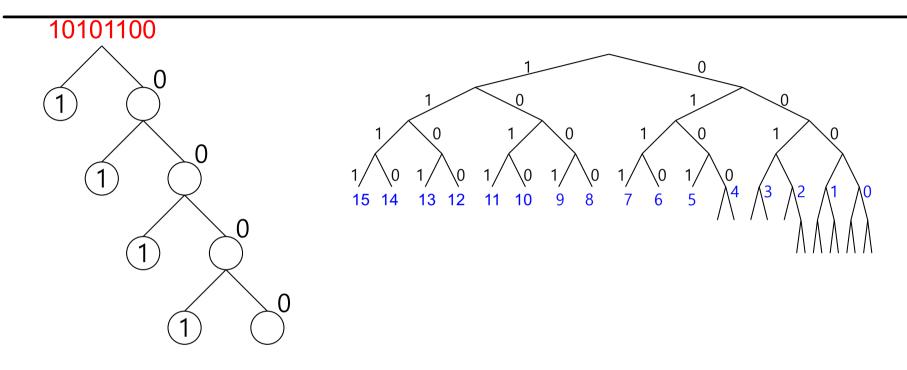
Kademlia Protocol



An entry in k-bucket in i-th level shares at least i-bit prefix with the nodeID


- Add new contact if
 - k-bucket is not full

Kademlia Protocol



- Iterative, parallel, prefix-matching routing
- Replica roots: k closest nodes

Kad Protocol

- ♦ Wide routing table → short routing path
- No restriction on nodelD
- ✤ Replica root: |r, k| < δ</p>

- K bucket in i-th level covers 1/2ⁱ
 ID space
- K buckets with index [0,4] can be split if new contact is added to full bucket

Vulnerabilities of Kad

- No admission control, no verifiable binding
 - An attacker can launch a Sybil attack by generating an arbitrary number of IDs
- Eclipse Attack
 - Stay long enough: Kad prefers long-lived contact
 - (ID, IP) update: Kad client will update IP for a given ID without any verification
- Termination
 - Query terminates when A receives 300 matches.
- Timeout
 - When M returns many contacts close to K, A contacts only those nodes and timeouts.

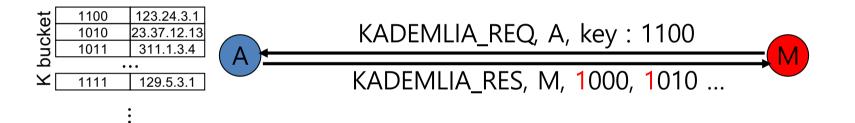
Attacking the Kad Network

Attack Model

✤ Attack goal

Degrade the service of the Kad network, by causing a significant fraction of all keyword as well as node searches to fail.

✤ Attacker


- Attacker controls only end-system
- Does not require corruption or misrouting of IP-layer packet between honest nodes
- Attacker's primary cost is in bandwidth, and it has enough computational and storage resources

Actual Attack

Preparation phase

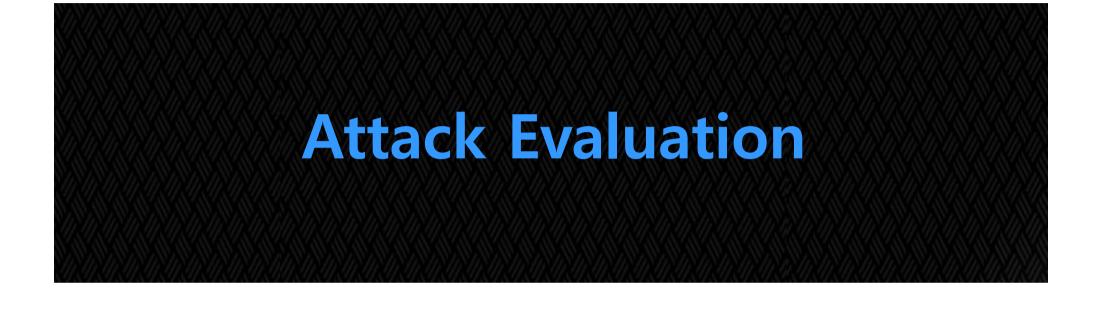
- Backpointer Hijacking: honest A, attacker M
 - Learns A's Routing Table by sending appropriate queries

Then, change routing table by sending the following message.

Actual Attack

Execution Phase

- Termination condition

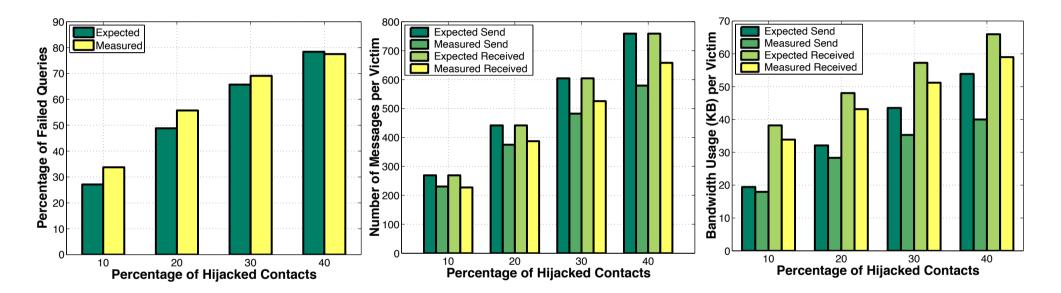

Keyword terminates when the querier A receives more than 300 keyword matches in response to SEARCH_REQ messages => malicious node sends a list of 300 bogus matches in reponse

Timeout condition

No reply for 25 seconds, it will stop sending message.

=> Provide many non-existing contacts

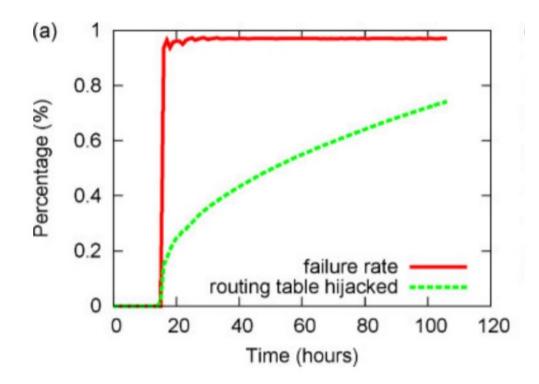
Summary of Estimated Cost


Assumption

- Total 1M nodes
- 860 routing table entries
- 100 Mbps network link
- Preparation phase cost
 - 41.2GB bandwidth to hijack 30% of routing table
 - Takes 55 minutes with 100 Mbps link
- Execution phase cost
 - 100 Mbps link is sufficient to stop 65% of WHOLE query messages.

Large Scale PlanetLab Experiment

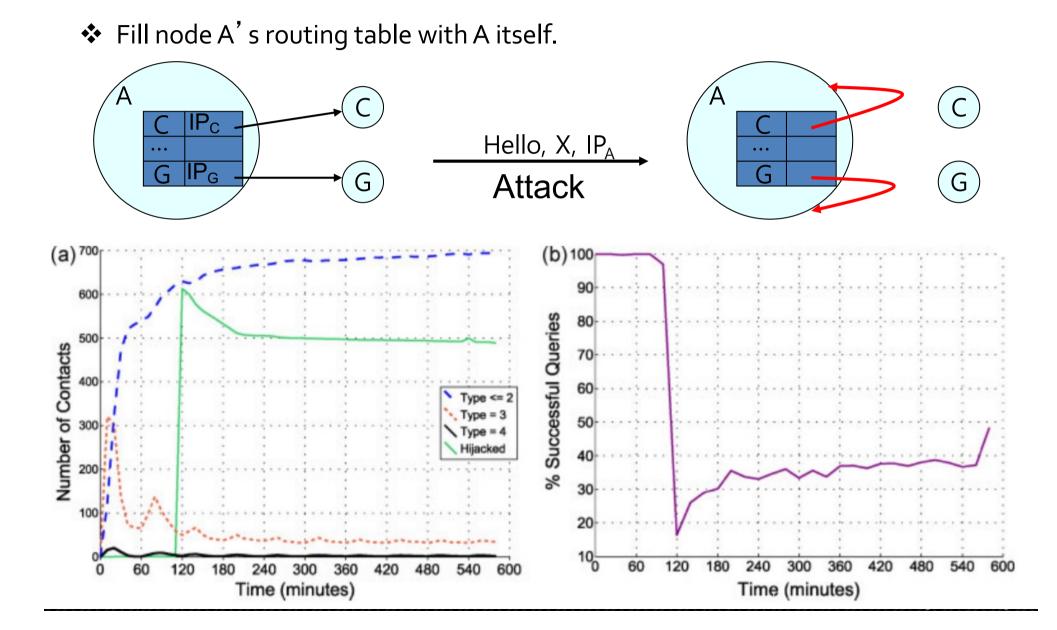
11,303 ~ 16,105 Kad nodes running on ~500 PlanetLab machines


Comparison between expected and measured

- keyword query failures
- Number of messages used to attack one node
- Bandwidth usage

Large Scale Simulation

50,000 nodes and 50 attackers with DVN
Focus on control plane (routing process)



Screen Shots

Search Results 👻							
🛿 windows 🛛 🎡 blues 🖾	🤹 rock 🖾 🎡 s	impsons 🖾 🎡 m	athematica (32	9) 🖾			
ile Name		Size	Availabilit	y 🗸			
				Title	Length	Rile Name	Folder

Reflection Attack

Mitigation

Identity Authentication

Method	Secure	Persistent ID	Incremental deployable
Verify the liveness of old IP	No	Yes	Yes
Drop Hello with new IP	Yes	No	Yes
ID=hash(IP)	Yes	No	No
ID=hash(Public Key)	Yes	Yes	No

- Routing Corruption
 - 3 parallel lookups but they are not independent

backpointers	Current method	Independent parallel routes
40%	98% fail	45% fail
10%	59.5% fail	1.7% fail

Jun, 27. 2008 .: Several changes were made to Kad in order to defy routing attacks researched by University of Minnesota guys [Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, Denis Foo Kune, Nicholas Hopper, Yongdae Kim], in particular:

Kad contacts will only be able to update themself in others routing tables if they provide the proper key (supported by 0.49a+ nodes) in order to make it impossible to hijack them
Kad uses now a three-way-handshake (or for older version a similar check) for new contacts, making sure they do not use a spoofed IP
Unverified contacts are not used for routing tasks and a marked with a special icon in the GUI

Related Work

- Sit, E., & Morris, R. (2002, March). Security considerations for peer-to-peer distributed hash tables. In *International Workshop* on Peer-to-Peer Systems (pp. 261-269). Springer, Berlin, Heidelberg.
- Castro, M., Druschel, P., Ganesh, A., Rowstron, A., & Wallach, D. S. (2002). Secure routing for structured peer-to-peer overlay networks. ACM SIGOPS Operating Systems Review, 36(SI), 299-314.
- Fiat, A., Saia, J., & Young, M. (2005, October). Making chord robust to byzantine attacks. In *European Symposium on Algorithms* (pp. 803-814). Springer, Berlin, Heidelberg.

Work After This Work

- Cholez, T., Chrisment, I., & Festor, O. (2009, June). Evaluation of sybil attacks protection schemes in kad. In *IFIP International Conference on Autonomous Infrastructure, Management and Security* (pp. 70-82). Springer, Berlin, Heidelberg.
- Yu, J., Fang, C., Xu, J., Chang, E. C., & Li, Z. (2009, September). ID repetition in Kad. In *Peer-to-Peer Computing, 2009. P2P'09. IEEE Ninth International Conference on* (pp. 111-120). IEEE.
- Fantacci, R., Maccari, L., Rosi, M., Chisci, L., Aiello, L. M., & Milanesio, M. (2009, June). Avoiding eclipse attacks on kad/kademlia: an identity based approach. In *Communications, 2009. ICC'09. IEEE International Conference on* (pp. 1-5). IEEE.
- Apostolaki, M., Zohar, A., & Vanbever, L. (2017, May). Hijacking bitcoin: Routing attacks on cryptocurrencies. In Security and Privacy (SP), 2017 IEEE Symposium on (pp. 375-392). IEEE.
- Blond, S. L., Manils, P., Abdelberi, C., Kaafar, M. A. D., Castelluccia, C., Legout, A., & Dabbous, W. (2011). One bad apple spoils the bunch: exploiting P2P applications to trace and profile Tor users. arXiv preprint arXiv:1103.1518.

Future Work

- Ethereum uses a variant of Kademlia protocol in node discovery.
- Make nodeID with its public key
- Try to connect with the closest node as a peer

→ Same problem in here?

Why no verification mechanism in the first place?

Conclusion

- Deny service to a large portion of the Kad network with only 100Mbps of bandwidth
- ✤ The attack was successful and efficient.
- This attack is more efficient than currently known attacks such as Sybil and Index Poisoning
- ✤ Introduce new simulator, DVN.

FAQ

- ☆ 정현식
 - How Kad is different from the original Kademlia specification? If it's n ot that different, there are some blockchains using Kademlia to disco ver nodes. Was there any effective attack on those blockchains?
- Tuan
 - I think these vulnerabilities can be exploited to make more serious att acks, which can affect users worldwide. One example: malicious node s response A with malicous IDs, that IDs contain malwares or ransom ewares, users don't have any sense to know they are malwares and ac cess that data.
- ◈ 고우영
 - This DVN simulator seems very powerful, Can you introduce recent simul ator?
- ✤ 김성중
 - Is there a similar attack on the recently proposed P2P network?
- ❖ 이태화
 - Many cryptocurrency uses p2p services. Are there same problems?

Thank you!!!

